The use of autologous bone grafts and xenogenic bone materials for reconstruction of the facial bone defects (randomized prospective study)

V. A. Rybak, T. A. Pavlychuk, A. V. Kopchak


The objective - to compare the efficacy of surgical interventions to replace jaw defects with the use of different types of bone grafts based on objective clinical and radiological criteria. The study included 90 patients with postoperative jaws defects. They underwent reconstructive operation for creating conditions for further prosthetic rehabilitation. The patients were divided into 3 randomized groups, depending on the surgical treatment used: group I - xenogenic bone substitutes were used, group II - autologous corticocancellous bone grafts from the iliac crest and in group III autograft combined with PRGF. Patients' status was assessed in the early (up to 1 month) and long-term postoperative period (more than 6 months). In the study series, xenogenic materials showed the highest volumetric stability in the remote postoperative period (19,9 ± 8,1% versus 45.6 ± 21.84% for bone autografts). However, autologous grafts demonstrated better integration and quality of bone tissue. There were no significant differences in frequency of postoperative complications or the possibility of implant placement in the study groups. The use of PRGF in combination with autograft accelerated the regeneration of soft tissues, but it does not affect significantly the incidence of infection complications and volume loss of the bone grafts.


autologous bone grafts, xenografts, PRP, PRGF, bone volume and density

Full Text:



Vovk Y. Results of the guided bone regeneration in patients with jaw defects and atrophies by means of Mondeal® occlusive titanium membranes. - International Journal of Oral and Maxillofacial Surgery. 2005;1(34):123.

Shnayder al. Reconstruction of the Lateral Mandibular Defect: A Review and Treatment Algorithm: JAMA Facial Plast Surg. 2015;17(5):367-73.

Greenbaum M., Kanat I. Current concepts in bone healing. Review of the literature. Journal of the American Podiatric Medical Association. 1993;83(3):123–129.

Schmitz J., Hollinger J. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research. 1986;205:299–308.

JensenS.S., Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials.:Int J Oral Maxillofac Implants. 2009;24:218-36.

Spin-Neto R., Stavropoulos A., F.L. Coletti et al. Graft incorporation and implant osseointegration following the use of autologous and fresh-frozen allogeneic block bone grafts for lateral ridge augmentation.:Clin Oral Implants Res. 2014;25(2):226-33.

Sbordonea C., et al. Volumetric changes after sinus augmentation using blocks of autogenous iliac bone or freeze-dried allogeneic bone. A non-randomized study. - Int J Oral MaxillofacSurg. 2014;42:113-118.

Abdulrazaq S.S. Evaluation of the Trephine Method in Harvesting Bone Graft From the Anterior Iliac Crest for Oral and Maxillofacial Reconstructive Surgery. -J Craniofac Surg. 2015;26(8):744-6.

Streckbein P., Kähling C. Wilbrand J.F. et al. Horizontal alveolar ridge augmentation using autologous press fit bone cylinders and micro-lag-screw fixation: technical note and initial experience. J Craniomaxillofac Surg. 2014;42(5):387-91.

RevieJ., Kerns G.:Mechanisms of Guided Bone Regeneration. Open Dent J. 2014; 8: 56–65.

Miron R.J., Hedbom E., Saulacic N. et al. Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J. Dent Res. 2011;90:1428–1433.

Brugnami F. Local intraoral autologous bone harvesting for dental implant treatment: alternative sources and criteria of choice. Keio J Med. 2009;58(1):24-8.

Johansson B., Grepe A., Wannfors K. et al. A clinical study of changes in the volume of bone grafts in the atrophic maxilla. DentomaxillofacRadiol. 2001;30:157.

Dasmah A., Tho A., Ekestubbe A., Sennerby L., Rasmusson L. et al. Particulate vs. block bone grafts: three-dimensional changes in graft volume after reconstruction of the atrophic maxilla, a 2-year radiographic follow-up. J. Craniomaxillofac Surg. 2012;40(8):654-9.

Mertens C., Decker C., Engel M., Sander A., Hoffmann J., Freier K. Early bone resorption of free microvascular reanastomized bone grafts for mandibular reconstruction--a comparison of iliac crest and fibula grafts. J. Craniomaxillofac Surg. 2014;42(5):217-23.

Galindo-Moreno, P., Padial-Molina, M., Fernandez-Barbero, J.E., Mesa, F., Rodriguez-Martinez, D. &O’Valle, F. Optimal microvessel density from composite graft of autogenous maxillary cor-tical bone and anorganic bovine bone in sinus augmentation: influence of clinical variables. Clinical Oral Implants Research. 2010;21:221–227.

Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss: an experimental study in the dog. Clin Oral Implants Res. 1997;8:117–24.

Artzi Z., Tal H., Dayan D. Porous bovine bone mineral in healing of human extraction sockets. Part 1. histomorphometric evaluations at 9 months. J Periodontol. 2000;71:1015–23.

Wetzel A.C., Stich H., Caffesse R.G. Bone apposition onto oral implants in the sinus area filled with different grafting materials: a histological study in beagle dogs. Clin Oral Implants Res. 1995;6:155–63.

Hallman, M., Lundgren, S., Sennerby, L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clinical Implant Dentistry and Related Research. 2001;3: 87–96.

Piattelli M., Favero G.A., Scarano A. et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants. 1999;14:835–40.

Piattelli M., Favero G.A., Scarano A. et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants. 1999; 14:835–40.

Macera A., Nistri L., Redl B., Innocenti M., Civinini R. The use of autologousblood-derivedgrowth factorsin bone regeneration, Clin Cases MinerBoneMetab. 2011; 8(1):25–31.

Hakimi M, Jungbluth P, Sager M, et al.: Combined use of platelet-rich plasma and autologous bone grafts in the treatment of long bone defects in mini-pigs.Injury. 2010;41(7):717–723.

Isaac A., RodriguezE., GrowneyKalaf A.: Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy - Biomed Res Int. 2014; 2014: 392398. 2014 Jun 23. doi: 10.1155/2014/392398.

Barone A., Covani U. Maxillary alveolar ridge reconstruction with nonvascularized autogenous block bone: clinical results. J Oral MaxillofacSurg 65:2039, 2007.

Gultekin B.A., Bedeloglu E., Kose T.E., Mijiritsky E. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges E.: Biomed Res Int., 2016;26.

Misch C.E., Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent. 1993;2:158–67.

Wetzel A.C., Stich H., Caffesse R.G. Bone apposition onto oral implants in the sinus area filled with different grafting materials: a histological study in beagle dogs. Clin Oral Implants Res. 1995;6:155–63.

Timothy M., Deeb H., PushkarM. Iliac crest bone grafting for mandibular reconstruction: 10-year experience outcomes. J Oral BiolCraniofac Res. 2018 Jan-Apr; 8(1): 25–29.

Waseem Ahmed, Muhammad AdilAsim, Afeefa Ehsan, Qalab Abbas Non-Vascularized Autogenous Bone Grafts for Reconstruction of Maxillofacial Osseous Defects.- Journal of the College of Physicians and Surgeons Pakistan. 2018;28(1):17-21.

Barone A., Ricci M., Covani U., Nannmark U., Azarmehr I., Calvo-Guirado J.L. Maxillary sinus augmentation using prehydratedcorticocancellous porcine bone: hystomorphometric evaluation after 6 months. Clin Implant Dent Relat Res. 2012;14(3):373-9.

Guarnieri R., Belleggia F., Ippoliti S. et al. Clinical, Radiographic, and Histologic Evaluation of Maxillary Sinus Lift Procedure Using a Highly Purified Xenogenic Graft (Laddec®). J Oral Maxillofac Res. 2016; 7(1);3.

Alayan J., IvanovskS. A prospective controlled trial comparing xenograft/autogenous bone and collagen-stabilized xenograft for maxillary sinus augmentation—Complications, patient-reported outcomes and volumetric analysis. Clin Oral Impl Res. 2017;1–15.

Brugnami F., Caiazzo A., Leone C. Local intraoral autologous bone harvesting for dental implant treatment: alternative sources and criteria of choice. Keio J Med. 2009;58(1):24-8.

Pacifici L., Casella F., Ripari M. Lifting of the maxillary sinus: complementary use of platelet rich plasma, autologous bone deproteinised bovine bone. Case report.Minerva Stomatologica. 2003;52(9):471–478.

Anitua E., Prado R., Troya M. et al. Implementation of more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration. J Platelets. 2016;5(27):459-466.

Isaac A. Rodriguez, Emily A. GrowneyKalaf, Gary L. Bowlin, and Scott A. Sell, “Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy,” BioMed Research International, vol. 2014, Article ID 392398, 15 pages, 2014.

Anitua E. The use of plasma-rich growth factors (PRGF) in oral surgery. J PractProcedAesthet Dent. 2001;6(5):487-493.

Rivera C., Monsalve F., Salas J., Morán A., Suazo I. Platelet-rich plasma, plasma rich in growth factors and simvastatin in the regeneration and repair of alveolar bone. ExpTher Med. 2013;6(6):1543-1549.

Thor A., Franke-Stenport V., Johansson C.B., et al. Early bone formation in human bone grafts treated with platelet rich plasma: Preliminary histomorphometric results. Int. J Oral Maxillofac Surg. 2007; 36:1164–1171.

Wiltfang J., Kloss F.R., Kessler P., Nkenke E., Schultze-Mosgau S., Zimmermann R., et al. Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in criticalsize defects. Clin Oral Implants Res. 2004;15(2):187–93.



  • There are currently no refbacks.

Copyright (c) 2018 © The Author (s) 2018

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

POL-index 2011 - 2014

BASE 2011 - 2014

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

Find a library that holds this journal:

Journal Language(s): English 

PBN Poland



Redaction, Publisher and Editorial Office

Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2 Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at

SIC Science citation index (calculated on the basis of TCI and Page Rank) 0

Russian Impact factor 0.16

Indexed in Index Copernicus Journals Master List.,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase


Universal Impact Factor 1.78 for year 2012. (

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ)

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski