Niewirusowy transfer genów do komórek skóry – wybrane metody = Non-viral gene transfer into skin cells – selected methods

Ewelina Wędrowska, Maciej Gawroński, Tomasz Wandtke, Arkadiusz Goede, Mateusz Wędrowski, Elżbieta Piskorska

Abstract


Wędrowska Ewelina, Gawroński Maciej, Wandtke Tomasz, Goede Arkadiusz, Wędrowski Mateusz, Piskorska Elżbieta. Niewirusowy transfer genów do komórek skóry – wybrane metody = Non-viral gene transfer into skin cells – selected methods. Journal of Education, Health and Sport. 2016;6(1):157-170. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.45147

http://ojs.ukw.edu.pl/index.php/johs/article/view/45147

https://pbn.nauka.gov.pl/works/704486

 

 

 

The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 755 (23.12.2015).

755 Journal of Education, Health and Sport eISSN 2391-8306 7

© The Author (s) 2016;

This article is published with open access at Licensee Open Journal Systems of Kazimierz Wielki University in Bydgoszcz, Poland

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium,

provided the original author(s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non Commercial License

(http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited.

This is an open access article licensed under the terms of the Creative Commons Attribution Non Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted, non commercial

use, distribution and reproduction in any medium, provided the work is properly cited.

The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 15.12.2015. Revised 12.01.2016. Accepted: 25.01.2016.

 

 

 

Niewirusowy transfer genów do komórek skóry – wybrane metody

Non-viral gene transfer into skin cells – selected methods

 

 

Ewelina Wędrowska1, Maciej Gawroński1, Tomasz Wandtke1, Arkadiusz Goede1, Mateusz Wędrowski2, Elżbieta Piskorska3

 

1Zakład Genoterapii, Uniwersytet Mikołaja Kopernika w Toruniu, Collegium Medicum im. L. Rydygiera w Bydgoszczy

2Zakład Pozytonowej Tomografii Emisyjnej i Diagnostyki Molekularnej, Uniwersytet Mikołaja Kopernika w Toruniu, Collegium Medicum im. L. Rydygiera w Bydgoszczy

3Katedra Patobiochemii i Chemii Klinicznej, Uniwersytet Mikołaja Kopernika w Toruniu, Collegium Medicum im. L. Rydygiera w Bydgoszczy

 

1Department of Gene Therapy, Faculty of Medicine,  Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland

2Department of Positron Emission Tomography and Molecular Diagnostics, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland

3Department of Pathobiochemistry and Clinical Chemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland

 

 

 

Streszczenie

 

Wprowadzenie:

Skóra jako największy i najłatwiej dostępny narząd stanowi atrakcyjny cel dla terapii genowej, która od wielu lat budzi ogromne nadzieje środowiska naukowego. Jednakże, próby terapii przeprowadzone z wykorzystaniem wektorów wirusowych wykazały szereg wad i ograniczeń m.in. obserwowano indukcję odpowiedzi immunologicznej, losową integrację transgenu z genomem gospodarza i/lub niską wydajność jego ekspresji. Dlatego, wciąż poszukuje się alternatywnych, skuteczniejszych i jednocześnie bezpieczniejszych metod transferu genów. Atrakcyjnej alternatywy upatruje się w metodach niewirusowych.

Cel pracy:

Przedstawienie wybranych metod niewirusowego transferu genów wykorzystywanych w terapii genowej chorób skóry.

Skrócony opis stanu wiedzy:

Terapia genowa chorób skóry obejmuje wykorzystanie wektorów plazmidowych jako nośnika genów terapeutycznych, a także metod ich dostarczania do komórek takich jak: elektroporacja, mikroiniekcja, sonikacja, wykorzystanie nośników lipidowych i polimerów kationowych.

Podsumowanie:

Niewirusowe metody transferu genów oferują pewne zalety włączając niską toksyczność, brak infekcyjności oraz łatwość i niskie koszty produkcji w porównaniu z technikami wirusowymi. Niewirusowe metody wydają się być obiecującym narzędziem terapii genowej chorób skóry w szczególności nowotworów tego narządu.

 

Słowa kluczowe: plazmid, transfer genów, skóra, wirus, terapia genowa.

 

 

Summary

Introduction:

Skin, the largest and most accessible organ of the human body is considered as an ideal gene therapy target. However, various types of viral vectors used in classical gene therapy have a number of disadvantages, such as possibility of immune response induction, random integration of inserts into the host genome or low expression efficiency. Therefore, there is an urgent need for alternative, non-viral methods of gene transfer.

Aim of the study:

To present methods for non-viral gene transfer used in gene therapy of skin diseases.

Short description of knowledge state:

Gene therapy for skin diseases include the usage of plasmid vectors as a carrier for therapeutic genes and different methods for their delivery into cells such as: electroporation, microinjection, sonication, lipid carriers and cationic polymers.

Summary:

Non-viral gene transfer methods offer some advantages including lower toxicity, non-infectious properties, ease of production and low costs as compared to viral techniques. Non-viral approaches are the promising tool in gene therapy of skin diseases, in particular in skin cancer ceases.

 

Key words: plasmids, gene transfer, skin, viruses, gene therapy.


Keywords


plazmid, transfer genów, skóra, wirus, terapia genowa, plasmids, gene transfer, skin, viruses, gene therapy.

Full Text:

PDF (Polski)

References


Abdul-Wahab A, Qasim W, McGrath JA. Gene therapies for inherited skin disorders. Semin Cutan Med Surg. 2014; 33(2): 83-90.

Chira S, Jackson CS, Oprea I et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget, 2015; 13: 30675-703.

Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669-72.

Setoguchi Y, Jaffe HA, Danel C et al. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. J Invest Dermatol. 1994; 102: 415-421.

Heller LC, Heller R. In vivo electroporation for gene therapy. Hum Gene Ther. 2006; 17: 890–897.

Nakanishi K, Uenoyama M, Tomita N et al. Gene transfer of human Hepatocyte Growth Factor into rat skin wounds mediated by liposomes coated with the Sendai Virus (Hemagglutinating Virus of Japan), Am J Pathol. 2002; 16: 1761-72.

Greco R, Oliveira G, Stanghellini MT et al. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6:95.

Jakóbisiak M. Perspektywy terapii genowej. Pneumonol. Alergol. Pol. 2009; 77: 289–293

Szala S. Terapia genowa, PWN, Warszawa 2003.

Grubb BR, Pickles RJ, Ye H et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature. 1994; 371: 802-806.

Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand, 2003; 177: 437-447.

Rabussay D, Dev NB. Enhancement of therapeutic drug and DNA delivery into cells by electroporation. J Phys D: Appl Phys. 2003; 36: 348-363.

Ferraro B, Cruz YL, Baldwin M et al. Increased perfusion and angiogenesis in a hind limb ischemia model with plasmid FGF-2 delivered by noninvasive electroporation. Gene Ther. 2010; 17: 763–769.

Ferraro B, Cruz YL, Coppola D et al. Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing. Mol Ther. 2009; 17: 651–657.

Lee PY, Chesnoy S, Huang L. Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol. 2004; 123: 791–798.

Broderick KE, Khan AS, Sardesai NY.DNA vaccination in skin enhanced by electroporation. Methods Mol Biol. 2014; 1143: 123-130.

Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther. 2002; 5: 668–675.

Lucas ML, Heller R. IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol. 2003; 22: 755–763.

Daud AI, DeConti RC, Andrews S et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008; 26: 5896–5903.

Heller LC, Heller R. Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther. 2010; 10(4): 312-317.

Cha E, Daud A. Plasmid IL-12 electroporation in melanoma. Hum Vaccin Immunother. 2012; 8(11): 1734–1738.

Lamolinara A, Stramucci L, Hysi A et al. Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor. J Immunol Res. 2015; 2015: 159-145.

McCoy JR, Mendoza JM, Spik KW et al. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother. 2015; 11(3): 746-754.

Endoh M, Koibuchi N, Sato M et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther.2002; 5: 501-508.

Tsunoda S, Mazda O, Oda Y et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun. 2005; 336: 118-127.

Sheyn D, Kimelman-Bleich N, Pelled G et al. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Therapy. 2008; 15: 257-266.

Gupta J, Prausnitz MR. Recovery of Skin Barrier Properties after Sonication in Human Subjects Ultrasound Med Biol. 2009; 35(8): 1405–1408.

Lin MT, Pulkkinen L. The gene gun: current applications in cutaneous gene therapy. Int J Dermatol, 2000; 39: 161-170.

Porowińska D, Wujak M. Prokariotyczne systemy ekspresyjne. Postepy Hig Med Dosw, 2013; 67: 119-129.

Xia J, Martinez A, Daniell H, Ebert SN. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques. BMC Biotechnol. 2011; 11: 62.

Steitz J, Tüting T. Biolistic DNA vaccination against melanoma. Methods Mol Biol. 2013; 940: 317-337.

Abe A, Furumoto H, Yoshida K, et al. Gene gun-mediated skin transfection with FL gene suppresses the growth of murine fibrosarcoma. J Med Invest. 2011; 58: 39-45.

Wang S, Joshi S. Delivery of DNA to skin by particle bombardment. Methods Mol Biol. 2004; 245: 185-196.

Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene therapy, 2002; 9: 1647-1652.

Sato Y, Yamauchi N, Takahashi M et al.., In vivo gene delivery to tumor cells by transferring – streptavidin–DNA conjugate, Faseb Journal, 2000; 14: 2108-18.

Greco O, Scott SD, Marples B, Dachs GU. Cancer gene therapy: delivery, delivery, delivery. Frontiers in Biosciene, 2002; 7: 1516-1524.

Eriksson E, Yao F, Svensjo T et al. In Vivo Gene Transfer to Skin and Wound by Microseeding. J Surg Res. 1998; 78:85-91.

Chabri F, Bouris K, Jones T et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004; 150(5): 869-877.

Coulman SA, Barrow D, Anstey A et al. Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr Drug Deliv. 2006; 3(1): 65-75.

Pearton M, Saller V, Coulman SA et al. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release. 2012; 160(3): 561-569.

González-González E, Kim YC, Speaker TJ et al. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis. Sci Rep. 2011; 1: 158.

Chong RH, Gonzalez-Gonzalez E, Lara MF et al. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J Control Release. 2013; 166(3): 211-209.

Stein U, Walther W, Stege A et al. Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA, Molecular Therapy. 2008; 16: 178-186.

Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990; 1029: 91-97.

Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006; 116: 255-64.

Harvie P, Wong FM, Bally MB. Use of poly(ethylene glycol)– lipid conjugates to regulate the surface attributes and transfection activity of lipid DNA particles. J Pharm Sci. 2000; 89: 652-663.

Fischer D, Bieber T, Li Yet al. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999; 16: 1273-1279.

Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem. 2001; 12: 989-994.

Goula D, Benoist C, Mantero S et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Therapy. 1998; 5: 1291-1295.

Shanmugam S, Song CK, Nagayya-Sriraman S et al. Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch Pharm Res. 2009; 32(7): 1067-1075.

Carrer DC, Vermehren C, Bagatolli LA. Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release. 2008; 132(1): 12-20.

Matsumoto, K, Kubo H, Murata H et al. A pilot study of human interferon beta gene therapy for patients with advanced melanoma by in vivo transduction using cationic liposomes. Jpn J Clin Oncol. 2008; 38(12): 849-56.

Liu YJ, Zhang AN, Xue XP. Study on the application of PEI for gene transfer in mouse skin tissue. Sheng Wu Gong Cheng Xue Bao. 2007; 23(1): 166-170 [abstract].

Jan HM, Wei MF, Peng CL et al. The use of polyethylenimine-DNA to topically deliver hTERT to promote hair growth. Gene Ther. 2012; 19(1): 86-93.

Trabulo S, Cardoso AL, Mano M et al. Cell-Penetrating Peptides –Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals. 2010; 3: 961-993.

Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005; 57: 529-45.

Sawant R, Torchilin V, Raagel H et al. Intracellular transduction using cell-penetrating peptides. Mol BioSyst. 2009; 6: 628-640.

Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 2009; 61: 953-964.

Rothbard JB, Garlington S, Lin Q et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000; 6(11): 1253-1257.

Johnson LN, Cashman SM, Parker Read S, Kumar-Singh R. Cell Penetrating Peptide POD Mediates Delivery of Recombinant Proteins to Retina, Cornea and Skin. Vision Res. 2010; 50(7): 686–697.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Journal of Education, Health and Sport

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

https://pbn.nauka.gov.pl/sedno-webapp/search?search&searchCategory=WORK&filter.inJournal=36616

POL-index 2011 - 2014

https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-32a319c5-a850-4f44-ba70-1418a6087655

BASE 2011 - 2014

https://www.base-search.net/Search/Results?lookfor=Journal+of+Health+Sciences+%28Radom%29&type=all&oaboost=1&ling=1&name=&thes=&refid=dcrespl&newsearch=1

http://elibrary.ru/contents.asp?titleid=37467

http://journal.rsw.edu.pl/index.php/JHS/issue/archive

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

https://www.ncbi.nlm.nih.gov/nlmcatalog/101679844

Find a library that holds this journal: http://worldcat.org/issn/23918306

Journal Language(s): English 

PBN Poland

https://pbn.nauka.gov.pl/sedno-webapp/journals/49068

POL-index

https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-c39c8169-88d2-45db-9e7f-d948ce9981c4

BASE

https://www.base-search.net/Search/Results?join=AND&bool0[]=AND&lookfor0[]=2391-8306&type0[]=all&page=11&l=pl&oaboost=1&refid=dcpagepl

Redaction, Publisher and Editorial Office

Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2  www.ukw.edu.pl Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy http://ojs.ukw.edu.pl/index.php/johs  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at https://dbh.nsd.uib.no/publiseringskanaler/erihplus/periodical/info?id=485984

SIC Science citation index (calculated on the basis of TCI and Page Rank) 0

Russian Impact factor 0.16

Indexed in Index Copernicus Journals Master List.

http://journals.indexcopernicus.com/Journal+of+Education+Health+and+Sport,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase Index.com.

Website: www.infobaseindex.com

Universal Impact Factor 1.78 for year 2012. (http://www.uifactor.org/AppliedJournals.aspx)

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (https://pbn.nauka.gov.pl/journals/36616)

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ) http://elibrary.ru/contents.asp?titleid=37467

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski

(http://www1.bg.us.edu.pl/bazy/czasopisma/czasop_full.asp?id=3595)